Skip to content

Rui Chen wins 2024 UW NanoES Student Achievement Award for Pioneering Work in Nanophotonics

August 5, 2024

The University of Washington (UW) Institute of Nano-Engineered Systems (NanoES) awarded Electrical & Computer Engineering Ph.D. student Rui Chen its 2024 Student Achievement Award. Chen was recognized at the NanoES Symposium on May 23.

Rui Chen posing outside with fall foliage in the background.

Nominated by NanoES member and Electrical & Computer Engineering professor Arka Majumdar for his “remarkable productivity and innovation,” Chen has authored 18 journal publications or in-press articles. He was the first author of seven publications, and his work has been featured in prestigious journals such as Nature Nanotechnology, Nature Communications and ACS Nano. He has also amassed over 360 citations.

Chen’s primary research area is nanophotonics, which involves exploring photons, or light, at the nanoscale for a range of applications, including optical communications, miniaturized spectroscopy, optical computing, and more. His focus has been on developing a programmable nanophotonic platform, which is essential for many of these applications.

“This platform’s programmability is enabled by a special type of material called phase-change material, which consumes zero static power once programmed,” said Chen. “With this programmable photonic platform, we anticipate a significant transformation in how people develop new ideas and commercialize products in the photonics field.”

Chen said he became fascinated with how small structures and devices can be beneficial, comparable, or superior to their bulky counterparts.

“After entering this field, I realized how strongly it is related to our lives—all smartphones and laptops have billions of nano-electronic devices,” he said. “That’s the key enabler of our current lifestyle. Moreover, it’s just so cool to think about these tiny structures in the nanoscale.”

According to Mujumdar, Chen’s faculty advisor, Chen has an outstanding research aptitude and enjoys challenging problems.

“From day one in my group, Rui has demonstrated his capability to get things done,” said Majumdar. “He is also very inquisitive and self-critical of his work. In addition to his research accomplishments, Rui has shown a profound commitment to mentoring and guiding over five undergraduate and master’s students in our group.”

Nominations for the next student achievement award will be accepted in spring 2025.

Ultra-flat optics for broadband thermal imaging

Long-wavelength infrared (LWIR) imaging holds critical significance across many applications, from consumer electronics to defense and national security. It finds applications in night vision, remote sensing, and long-range imaging. However, the conventional refractive lenses employed in these imaging systems are bulky and heavy, which is undesirable for almost all applications. Compounding this issue is the fact that many LWIR refractive lenses are crafted from expensive and limited-supply materials, such as germanium.

Next-generation data centers within reach thanks to new energy-efficient switches

In a paper published online July 4 in Nature Nanotechnology, a team led by University of Washington scientists reported the design of an energy-efficient, silicon-based non-volatile switch that manipulates light through the use of a phase-change material and graphene heater. The exceptional performance of their switch could help advance both information technology and quantum computing.

UW researchers developing miniaturized imaging device to treat heart attack, stroke

An interdisciplinary research team at the University of Washington, led by Arka Majumdar, an associate professor of electrical and computer engineering and physics, was awarded $3.6 million in funding from the National Science Foundation to use meta-optics to develop a dramatically smaller endoscope that can image previously inaccessible areas of the heart and brain.

Small Business awards from DARPA and NASA fuel growth of UW spinout Tunoptix

Tunoptix, a Seattle-based optics startup co-founded by University of Washington electrical and computer engineering professors Karl Böhringer and Arka Majumdar, received a $1,500,000 Small Business Technology Transfer (STTR) Phase II award from the Defense Advanced Research Projects Agency (DARPA) and a Small Business Innovation Research (SBIR) Phase I award from NASA to advance their meta-optics imaging systems.